
�

Requirements Engineering 1:
“Introduction”

Steve Easterbrook
8/20/97

�

Outline

Requirements in the development lifecycle

The essential requirements process

Importance of requirements engineering

Specifications: types and audiences

An introduction to systems analysis



�

Lifecycle Models

• Waterfall (and V-model)

• Rapid Prototyping

• Phased Models:
À Incremental Development
ÀEvolutionary Development

• Risk Management (Spiral Model)

• Domain Engineering model

�

Waterfall Model

REQUIREMENTS

DESIGN

CODE

TEST

INTEGRATE

Source: Adapted from Dorfman, 1997, p7



�

Requirements and Waterfalls

• Waterfall model describes a process of stepwise
refinement

• Requirements Analysis is the second step:
À 1. Market Analysis (or business planning, or systems engineering)
À 2. Requirements analysis
À 3. Design
À etc.

• Problems:
ÀWaterfall model takes a static view of requirements, ignores volatility
ÀLack of user involvement once specification is written
ÀUnrealistic separation of specification from design
ÀDoesn’t accommodate prototyping, reuse, etc.

Source: Adapted from Loucopoulos & Karakostas, 1995, p29

�

Prototyping lifecycle

REQUIRE-
MENTS

DOCUMENT

REQUIRE-
MENTS

DESIGN

DESIGN

PROTOTYPE

CODE

BUILD

PROTOTYPE

TEST INTEGRATE

TEST

PROTOTYPE

Source: Adapted from Dorfman, 1997, p9



�

Requirements and Prototyping

• Prototyping is used for:
À understanding the requirements for the user interface
À examining feasibility of a proposed design approach
À exploring system performance issues

• Requirements Engineering
ÀElicitation by involving the user in experimental use of prototypes
ÀAnalysis by analyzing structure and behavior of the prototype
ÀThe prototype acts as a formal specification

• Problems:
À users treat the prototype as the solution
À a prototype is only a partial specification

Source: Adapted from Loucopoulos & Karakostas, 1995, p30

�

Phased Lifecycle Models

REQUIRE
-MENTS

DESIGN CODE TEST INTEGRAT
E

OPERATIONS
&

MAINTENANCE

REQUIRE
-MENTS

DESIGN CODE TEST INTEGRAT
E

OPERATIONS
&

MAINTENANCE

REQUIRE
-MENTS

DESIGN CODE TEST INTEGRAT
E

DES CODE TEST INT. O&MREQ.

DES CODE TEST INT. O&M

DES CODE TEST INT. O&M

DES CODE TEST INT. O&M

Source: Adapted from Dorfman, 1997, p10



�

Requirements in the Spiral Model

• Spiral model is a risk management model

• For each iteration:
À plan next phases; determine objectives & constraints; evaluate alternatives;

resolve risks; develop product

• Includes as Requirements processes:
ÀRequirements risk analysis (using simulation and prototyping)
À Planning for design
(these reduce the risk that requirements process has to be repeated because

requirements cannot be met)

• Problems:
À Spiral model cannot cope with unforeseen changes during development (e.g.

emergence of new business objectives)

Source: Adapted from Loucopoulos & Karakostas, 1995, p30

��

Requirements and Domain Engineering

• The approach:
ÀRecognizes that requirements is not a one-off activity
ÀExploits similarity between applications in the same problem domain
À Facilitates reuse

• Requirements
ÀRequirements engineering follows domain analysis
ÀDomain analysis looks at commonalities between applications
À ‘problem understanding’ is reduced to a process of mapping between the

domain model and the needs of the specific application
À ‘specification’ consists of selection of an appropriate component from a

library of reusable analysis components

• Problems
ÀDomain analysis is an expensive effort, with a deferred payoff
ÀDeadlines for application development tend to dominate

Source: Adapted from Loucopoulos & Karakostas, 1995, p35



��

Real World

Problem
Statement

Implementation
Statement

System

C
o

rr
es

p
o

n
d

en
ce

C
o

rr
ec

tn
es

s

V
al

id
at

io
n

V
er

if
ic

at
io

n
Source: Adapted from Blum, 1992, p32

��

The essential requirements process

• Understand the problem
À elicitation, requirements acquisition, etc.

• Formally describe the problem
À specification, modelling, etc.

• Attain agreement on the nature of the problem
À validation, conflict resolution, negotiation
À requirements management - maintain the agreement!

Source: Adapted from Loucopoulos & Karakostas, 1995, p20



��

Nature of the requirements process

• Analysis problems have ill-defined boundaries

• Requirements are found in organizational contexts
(hence prone to conflict)

• Solutions to analysis problems are artificial

• Analysis problems are dynamic

• Tackling analysis requires interdisciplinary knowledge
and skill

Source: Adapted from Loucopoulos & Karakostas, 1995, p14

��

Importance of Requirements

• The Engineering argument
ÀEngineering is about developing solutions to problems
ÀA good solution can only be developed if the engineer has a solid

understanding of the problem

• The Economic argument
ÀErrors cost more the longer they go undetected
ÀCost of correcting a requirements error is 100 times greater in the

maintenance phase than in the requirements phase

• The “don’t be a lemming” argument
À Failure to understand and manage requirements is the biggest single cause of

cost and schedule over-runs

• The Safety Argument...



��

Requirements and Safety

• Fault analysis on Voyager (87 faults) & Galileo (122):
À Safety-related interface faults overwhelmingly caused by communication

errors between development teams (93%, 72%)
À Functional faults primarily caused by errors in recognising (understanding)

requirements (62%, 79%)
À Safety-related tend to be errors in specifying requirements, while non-safety

tend to be errors in implementing requirements.

• Safety-related software errors arose most often from
inadequate or misunderstood requirements

• Difficulties with requirements is the key root cause of
safety-related errors discovered in system testing

(Source: Lutz, 1993)

Source: Adapted from Lutz, 1993, p126-133

��

Specification - Roles

• Requirements Specification
À details the concerns of the customers and users
À defines functions to be performed, and constraints

• System Specification
ÀDefines the system boundary and the interactions between the system and its

environment
À a “black box” view

• Architectural Design specification
À identifies the major subsystems, and interactions between them
À allocates functional requirements to the subsystems

• Detailed design specification
À describes the details of the decomposed components of the system

Source: Adapted from Loucopoulos & Karakostas, 1995, p7



��

Audience for Requirements Specs

• Users, purchasers
ÀMost interested in system requirements
ÀNot generally interested in detailed software requirements

• Systems Analysts, Requirements Analysts
À author various specs that inter-relate

• Developers, Programmers,…
ÀHave to implement the requirements

• Testers
ÀNeed to determine that requirements have been met

• Project Managers
ÀNeed to measure and control the analysis and development processes

��

Secondary Stakeholders

• Standards committees

• Safety boards

• The general public

• Congress (& other tiers of government)
À even if they are not the purchasers or users

• Marketing Department

• Senior Management



��

Three roles for specifications

• A contract
À specifies a job to be done
À acts as basis for judging completion of the job (and hence payment!)

• A communication medium
ÀConveys an understanding of the domain
À Passes information between different teams in the software development

process

• A statement of commitment

��

Definitions

• Method
À “A systematic way of working to achieve a desired result”
ÀRequirements methods usually provide a set of notations, and some

heuristics for how to use them

• Technique
ÀA recipe for obtaining a certain result.
ÀTechniques prescribe a way of working in detail (algorithmically)

• Notation
ÀA systematic way to represent something
ÀMay be linguistic or graphical
ÀMay be formal or informal

• Methodology - “the study of methods”

Source: Adapted from Wieringa, 1996, p5



��

Systems...

��

What is a system?

• An actual or possible part of reality that can be
observed or interact with it’s environment
À cars, cities, houseplants, rocks, spacecraft, buildings...
À operating systems, DBMS, the internet, an organization
ÀNOT: numbers, truth values, letters.

• A “closed system” is a system that does not interact
with it’s environment
ÀThere are no closed systems in reality!

• Systems might have no physical existence
ÀThe only physical manifestations are symbolic or analogical representations

of the system
À Such systems are social constructs: they exist because we agree on ways to

observe them

Source: Adapted from Wieringa, 1996, p10



��

Types of System

• Natural Systems
ÀE.g. ecosystems, weather, water cycle, the human body, bee colony, ...

• Abstract Systems
ÀE.g. set of mathematical equations, computer programs, etc

• Designed Systems
ÀE.g. cars, planes, buildings, interstates, telephones, the internet, ...

• Human Activity Systems
ÀE.g. Organizations, markets, clubs, …

• … and any system may be hard or soft
À soft - cannot represent the system precisely
À hard - the system is precise, well-defined and quantifiable.

Source: Adapted from Carter et. al., 1988, p12

��

System Boundary

• System Environment:
À the part of the world with which the system can interact
À every system has an environment
À the environment is itself a system
ÀDistinction between system and environment depends on your viewpoint
À System interface (or boundary) is the set of all possible interactions between

system and environment

• Choosing the boundary
À Some choices make more sense than others
ÀChoice should be made to maximize modularity

• Examples:
ÀTelephone system - include: switches, phone lines, handsets, users, accounts?
ÀDesktop computer - do you include the peripherals?
À Flight control system - do you include the ground control?

Source: Adapted from Wieringa, 1996, p11-12



��

Boundary Drawing

• Exclude:
ÀComponents that have no functional effect on the system (relevant to it’s

purpose)
ÀComponents that influence the system but cannot be influenced or controlled

by the system

• Include:
À Items that can be strongly influenced or controlled by the system

• Balance:
À between totally open and totally closed systems

• Modularity:
À try to either include or exclude complete clusters of interactions to preserve

modularity

Source: Adapted from Carter et. al., 1988, p6-7

��

Exchange

Example System Boundary

phone
phone

Jack

Student

Secretary

cat
charge
rates

Steve

interrupts

influences

influences

Exchange

Source: Adapted from Carter et. al., 1988, p6



��

Achieving Modularity

• Guidelines:
À does the system have an underlying idea that can be described in one or two

sentences?
À Interaction among system components should be greater than interaction

between the system and it’s environment
ÀChanges within a system should cause minimal changes outside
ÀMore ‘energy’ is required to transfer something across the system boundary

than within the system boundary
À The system boundary should ‘divide nature at its joints’

• Choose the boundary that:
À increases regularities in the behaviour of the system
À simplifies the system behavior

Source: Adapted from Wieringa, 1996, p12

��

Control

ÀControl holds a system together
À structure and control are closely connected

• Self-maintaining causal network
À a self-enhancing process: growth of the internet
À a self-confirming process: visibility of a footpath
À a self-limiting process: pricing of commodities

• Purposive Control
À control sub-systems directed towards achieving a goal
À “purpose without choice”

• Purposeful Control
À special arrangements for decision making and control
À Free choice among competing alternatives
À “purpose with choice”

Source: Adapted from Carter et. al., 1988, p16



��

Controllers

• Purposive and purposeful systems need a controller

• Adaptive Control
ÀA feedback loop is created to monitor the system and adjust the control

accordingly

• Non-adaptive Control
À System is set up reliably in advance, so no monitoring is needed
À (sometimes called “open loop” or “feed-forward systems”)

• Both types require:
À knowledge about the system (a model?)
À awareness of the needs the controller is trying to satisfy

Source: Adapted from Carter et. al., 1988, p17

��

System Structure

• Subsystems…
À are systems too!
ÀA system is an organised collection of subsystems acting as a whole
À Subsystem boundaries should be chosen so that subsystems are modular

• An Aspect of a system
À is a restricted subset of the interactions between its subsystems
ÀE.g. for a car: all interactions to do with safety
À (note fluidity between safety as an aspect, and safety as a subsystem)

• Visibility
À Interactions between subsystems only are internal to the system
À Interactions between subsystems and the environment are external
ÀEngineers usually try to hide internal interactions
À For social systems, the internal interactions can be hidden too.

Source: Adapted from Wieringa, 1996, p13



��

Example

Usercirculation
desk

store
room

Database Available?

availability

Get book

Not available

Give book

Borrow request

Library

Source: Adapted from Wieringa, 1996, p14

��

System State

• State
À a system will have memory of its past interactions, i.e. ‘state’
À the state space is the collection of all possible states

• Discrete vs continuous
À a discrete system is a system whose states can be represented using natural

numbers
À a continuous system is one in which state can only be represented using real

numbers
À in a hybrid system some aspects of state can be represented using natural

numbers

• Observability
À the state space is defined in terms of the observable behavior
À the perspective of the observer determines which states are observable

Source: Adapted from Wieringa, 1996, p16-17



��

System transactions

• Any observable interaction
À starts in one state (the ‘initial state’)
À ends in another (the ‘final state’)
Àmay pass through a number of intermediate states

• A transaction is...
À ...any interaction that has no intermediate states
À ...atomic
À (but atomicity depends on the level of detail being observed)

• If atomicity is required at one level of detail, it must be
implemented at the lower level
À e.g. through rollback and commitment

Source: Adapted from Wieringa, 1996, p17-18

��

System Behavior

• Behavior of discrete systems can be modelled using
transition diagrams:

• Behavior of continuous systems cannot be modeled
in this way
À (but it can be abstracted into a discrete model)

Book

borrow
lose

return

renew

Source: Adapted from Wieringa, 1996, p19-20



��

System Properties

• A system property
À is an aspect of system behavior
À (often referred to as ‘attributes’ or ‘quality attributes’)

• Specifying properties:
ÀA property is specified behaviorally if an experiment has been specified that

will tell us unambiguously whether the system has the property
ÀA property is specified non-behaviorally if no such experiment has been

identified
À (sometimes referred to as functional / non-functional)
À Presence of non-behavioral properties is a subjective (consensual) decision

• Proxies
À If a property cannot be specified behaviorally, it may be possible to use a

different property to indicate the presence of the first property
ÀE.g. ‘easy to learn’, ‘easy to use’ as proxies for ‘user friendly’

Source: Adapted from Wieringa, 1996, p20-21

��

Next Week

• The systems engineering process

• What is a requirement?

• SRS Evaluation exercise



��

References

• Dorfman, M. “Requirements Engineering”. In Thayer, R. H and Dorfman, M.
(eds.) “Software Requirements Engineering, Second Edition”. IEEE Computer
Society Press, 1997, p7-22

• Loucopoulos, P. and Karakostas, V. “System Requirements Engineering”.
McGraw Hill, 1995.

• Blum, B. “Software Engineering: A Holistic View”. Oxford University Press,
1992.

• Lutz, R. R., “Analyzing Software Requirements Errors in Safety-Critical
Embedded Systems”. Proceedings of the IEEE International Symposium on
Requirements Engineering, San Diego, CA, 4-6 January, 1993, p126-133

• Wieringa, R. J. “Requirements Engineering: Frameworks for Understanding”.
Wiley, 1996.

• Carter, R., Martin, J., Mayblin, B., and Munday, M. “Systems, Management
and Change: A graphic Guide”. Paul Chapman Publishing, 1988.


